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Abstract. Using the ‘exact semiclassical analysis’, we study the spectrum of a one-parameter
family of complex cubic oscillators. The PT -invariance property of the complex Hamiltonians and
the reality property of the spectrum are discussed. Analytic continuations of the spectrum in the
complex parameter and their connections with the resonance problem for the real cubic oscillator
are investigated. The global analytic structure of the spectrum yields a branch point structure similar
to the multivalued analytic structure discovered by Bender and Wu for the quartic oscillator.

1. Introduction

Quantum systems characterized by non-Hermitian Hamiltonians are known to be of particular
interest in theoretical physics, e.g. quantum field theory and nuclear physics (see [1, 2] and
references therein). The purpose of this paper is to contribute to the subject, with a conjecture
of Bessis and Zinn-Justin [3, 4] and recent works on complex operators with real spectra ([5],
for instance) as a more precise motivation.

A large class of examples of one-dimensional Schrödinger Hamiltonians H = p2 +V (q),
p = −id/dq with complex-valued potentials V (q) but exhibiting real spectra are now known.
Most of these examples (cf [1, 3, 6–9]) share the property of enjoying PT -invariance§, where
P : (p, q) �→ (−p,−q) is the parity operator and T : (p, q) �→ (−p, q) is the time-reversal
operator, i.e. the potential satisfies the functional equality V (−q) = V (q). It is commonly
believed that the existence of real spectra for such Hamiltonians proceeds directly from the
PT -invariance property.

Such a belief may be enforced by the works of Caliceti et al [11, 12] (see also [13]), and
more recently [14], where a class of odd anharmonic oscillators Hβ = p2 + q2 + βq2N+1 (N is
a positive integer) is studied, indeed PT -symmetric for pure imaginary β. When Im(β) > 0
(respectively, Im(β) < 0),Hβ has a compact resolvant (and hence has no continuous spectrum)
and, furthermore, has a non-empty spectrum, with real eigenvalues when β is pure positive
(respectively, negative) imaginary, at least for |β| small enough. This last result was also
proved (using a different method) in [4] in the N = 1 case, which corresponds to the Bessis–
Zinn-Justin conjecture.

§ Nevertheless, PT -symmetry is not a necessary condition (see [10] for instance).
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8772 E Delabaere and D T Trinh

Following the announcement of the note [4], our purpose is to keep on our investigation
of this last Bessis–Zinn-Justin case. However, instead of working with the above Hamiltonian
Hβ (and N = 1), it will be more convenient to work with the family of Hamiltonians

Hα = p2 + iq3 + iαq (0)

which is PT -symmetric for real α. It appears that the situation is quite different depending
on whether α is positive or not. To the case α real positive (|α| large) in this representation
corresponds β = i(3α)−5/8 pure positive imaginary (|β| small) in Caliceti et al’s model:
from [4, 13] and for α > 0 large enough, considering the Hamiltonian Hα as an operator in
the Hilbert space L2, we thus obtain a discrete spectral set of real eigenvalues, with analytic
dependence with respect to α. As we shall see, such a property is actually destroyed when
α becomes negative, where pairs of (real) eigenvalues degenerate before becoming complex
conjugate: as noted in [15], the PT -symmetry property is not a sufficient demand to ensure
real spectra.

This result becomes more understandable when some analytic continuations are performed
in the complex α-plane. A particular interesting feature occurs when the phase of α reaches the
∓4π/5 values, which corresponds to β real in Caliceti et al’s perturbative model: the analytic
continuations of the eigenvalues are directly related to resonance values (or their complex
conjugate, depending on the sign ∓) of the real cubic oscillator. As pointed out in [11], this
yields a natural notion of resonance, viewed as analytic continuations of bound states.

The investigation of the quantization condition near the top of the cubic barrier gives the
key to a beautiful multivalued analytic structure of the analytic continuations of the spectrum,
in complete analogy with the complex branch point structure discovered by Bender and Wu
[16] for the quartic oscillator and much analysed since [17–19]: the eigenvalues are only
determinations of a sole multivalued function with a quasi-lattice of square root branch points
for its singularities.

This multivalued analytic structure can be investigated by the same techniques as those
used in [19] to analyse the conjecture of Bender and Wu. Considering α as a large (complex)
parameter, we shall make constant use of the ‘exact WKB analysis’ developed in [20, 21], after
ideas introduced by Voros [22, 23] and Ecalle [24]. The efficiency of this powerful tool has an
unfortunate counterpart: from the theoretical side, our analysis will only be valid for |α| large
enough. Nevertheless, our belief is that the ‘unknown zone’ where our method does not apply
does not hold particularly surprising phenomena. Some of the following claims (section 2) are
derived from this belief. We shall make precise in the following sections (section 4 and 5) to
what extent these claims can be considered as rigorous results.

2. Main claims

We start with α > 0 and consider Hα as an operator in the Hilbert space L2(R). Then:

Claim 1. For α positive real, the spectrum of Hα consists in a discrete set of eigenvalues
En(α), n ∈ N depending on α as real analytic functions.

Consequently, we claim that the Bessis–Zinn-Justin conjecture is true, at least when
positive real α are concerned. For any positive integer n, the eigenvalue En(α) is asymptotic
to 2

3
√

3
α3/2 when α → +∞, and more precisely:

Claim 2. For all n = 0, 1, . . . , the eigenvalue En is asymptotic to the Rayleigh–Schrödinger
series

En(α) ∼ 2

3
√

3
α3/2 + α1/4

( ∞∑
k=0

En,kα
−5k/4

)
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Figure 1. Bound states for real α.

where

En,0 = 31/4(2n + 1)

En,1 = 5
8n

2 + 5
8n + 11

48

En,2 = −3−1/4
(

235
384n

3 + 705
256n

2 + 545
768n + 155

768

)
...

En,k ∼ (−1)k+1 31/4
√

30

π3/2
60n

(
3−1/45

8

)k
�(n + k + 1

2 )

�(n + 1)
(k → +∞).

Conversely, this Rayleigh–Schrödinger series is Borel resummable with respect to α5/4, and
its Borel sum is exactly the eigenvalue En.

Investigations along the negative real axis give a quite different situation, showing that
PT -symmetry is not a sufficient demand to give a real spectrum: figure 1 shows that En

have some degenerate points where En cross by pairs before splitting into pairs of complex
conjugate eigenvalues. Precisely:

Claim 3. For all k ∈ N, E2k(α) and E2k+1(α) can be extended analytically along the negative
real axis up to a common crossing point αk .

As a matter of fact this set of crossing points is only the emerged set in the real part of a
quasi-lattice of singularities embedded in the complex α-plane. The complete picture reveals
a Bender and Wu-like complex branch point structure!

Claim 4. En(α) extend analytically in the α-complex plane as branches of a sole multivalued
analytic function E(α), with no singularities in C other than square root branch points.
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Figure 2. Westbound description for E0 (top) and E1 (bottom).

The Riemann surface of E(α) can be understood by describing its different (infinite number
of) sheets. This essentially means defining the different determinations En(α) of E(α) as
univalued functions defined in convenient cut planes. The simplest choice of cuts is given by
what we call the ‘westbound’ description as shown in figures 2 and 3, with almost horizontal
cuts asymptotic at infinity to the negative real axis.

In order to specify this choice of cuts, let us denote by EW
n the ‘west’-determination of

(the analytic continuations of) En: in figures 2 and 3, the reference [i, j ] near a branch point
means that this branch point is a common degenerate point for both EW

i and EW
j .



Spectral analysis of the complex cubic oscillator 8775

Figure 3. Westbound description for E2 (top) and E3 (bottom).

From these two figures, one can easily infer the following general rule: the nth west sheet
has a set of 2n + 1 cuts, where n (respectively, n + 1) of these cuts emanate from branch points
which are common for EW

n and EW
n−1 (respectively, EW

n and EW
n+1).

Now projecting onto the complex plane the whole set of branch points, one obtains a
quasi-lattice of singularities, shown in figure 4, which is symmetric with respect to the real
axis (as a consequence of the reality properties of En(α)), which is confined within a single
sector:

Claim 5. The projections of all branch points belong to a sector of aperture arg(α) ∈
]4π/5, 6π/5[ mod 2π .
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Figure 4. The quasi-lattice of singularities.

Figure 5. South-westbound description for E3.

Returning now to En(α), one has the following property.

Claim 6. Each En(α) can be analytically continued in a whole sectorial neighbourhood of
infinity Sn of aperture 12π/5,

Sn := {z = |z| exp(iθ) ∈ C,−6π/5 < θ < 6π/5, |z| > rn(θ)}
where rn is a positive function, depending on n. Moreover, En is asymptotic to its Rayleigh–
Schrödinger series at infinity inside the sector Sn.

At first sight, compared with claim 5 or with our description of the Riemann surface
of E, this claim 6 may appear surprising. To understand this result, one has to keep in
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mind that the description of a set of sheets is a matter of choice of cuts: for instance, our
‘westbound’ description may be changed into the ‘south-west’ description as exemplified in
figure 5, a suitable description when one wants to perform analytic continuations anticlockwise
around the origin. We shall denote by ESW

n the ‘south-west’ determination of (the analytic
continuations of)En, the reference [i, j ] near each branch point in figure 5 meaning here again
that this branch point is a common degenerate point for ESW

i and ESW
j .

Such a ‘south-west’ description (however, equivalent to the ‘west’ description) is now in
perfect agreement with our claim 6: each ESW

n reveals an infinite number of cuts emanating
from a set of branch points which lie asymptotically at infinity along the direction of phase
6π/5. The symmetric picture occurs for the ‘north-west’ description, thus giving claim 6 in
its complete form.

3. Method of investigation

As pointed out by Simon [17], interesting information can be derived from the scaling
(Symanzik) properties of the operator (0). Indeed, starting with the Sturm–Liouville equation

− d2

dq2
� + (iq3 + iαq)� = E� (1)

the change of variables

qresc = h̄2/5q αh̄4/5 = eiθ Ê = h̄6/5E

yields the following equivalent Schrödinger equation (with the abuse of notation of replacing
qresc by q for simplicity):

−h̄2 d2

dq2
! + (iq3 + ieiθq)! = Ê!. (2)

Now thinking of α as a large parameter in equation (1) makes the scale parameter h̄ appearing
as a small parameter of the singular perturbation in equation (2). This makes the use of the
(complex) WKB method possible, or more precisely its ‘exact semiclassical’ version [22] for
which we shall refer to [20, 21].

Let us introduce some notation. For a given value of (θ, Ê) we shall denote by Lθ,Ê the
(complexified) Lagrangian curve in the phase space, i.e. the curve in the (p, q)-plane defined
by the equation p2 + iq3 + ieiθq = Ê. With the projection on the complex q-plane, Lθ,Ê can
be considered as a twofold covering of C, ramified at the turning points where p = 0.

For the formal side, we shall make constant use of the so-called WKB expansions. Defined
locally on the above covering, the WKB solutions are formal solutions of equations (2) of the
form

P(q, h̄2)−1/2 exp

(
i

h̄

∫ q

qo

P (q ′, h̄2) dq ′
)

where

P(q, h̄2) = p(q) + p1(q)h̄
2 + p2(q)h̄

4 + · · · (3)

is a formal power series in h̄2. Such a WKB solution is, however, defined only up to an
arbitrary normalization factor. Therefore, analytic continuation along any closed path γ of
the covering multiplies them by a factor which does not depend on the initial normalization
point qo: we call it the monodromy factor of γ .
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Figure 6. An example of a cycle γ .

Such a closed path, which can be thought of as a cycle by forgetting the base point qo, has
been drawn in figure 6. Assuming that the turning points are simple, i.e. are simple zeros of
Ê − (iq3 + ieiθq), and noticing that analytic continuation along γ multiplies P(q, h̄2)−1/2 by
−1, one sees that the monodromy factor of γ reads as −aγ , where

aγ = exp

(
i

h̄
&γ

)
&γ =

∫
γ

P (q, h̄2) dq = ωγ + O(h̄2). (4)

The (formal) WKB expansion aγ is called the Voros multiplier of the cycle γ (cf [22]), while
ωγ = ∫

γ
p dq is the action integral over the cycle γ .

It is well known (cf [25] or [26], for instance) that these WKB expansions can be viewed
as the asymptotics (with respect to h̄ → 0) of analytic functions, at least locally in q when
the WKB solutions are concerned. As a matter of fact, a stronger property holds: the WKB
expansions enjoy the property of being resurgent (with respect to 1/h̄ → ∞)†. As explained in
[21], this means that the WKB expansions are an exact encoding of analytic functions through
the summation process, Borel-resummation or more generally some extensions of this Borel-
resummation such as the lateral resummations (which coincide with the Borel-resummation
in the case of Borel-summability) or median resummation.

The exact WKB method allows us to cover the (E, α)-space by various analytic charts
in each of which exact analytic quantization conditions are given in terms of new ‘model
variables’, related to the former (E, α) by (Borel or lateral) summable WKB expansions.

The necessary background is widely described in [20] in a ‘do it by yourself’ spirit, the
theoretical point of view being more precisely discussed in [21].

4. Sketch of proofs

Searching for bound states amounts to finding those values E of (1) such that the subspace
of wave solutions decaying at −∞ coincides with the subspace of wave solutions decaying at
+∞. Let us translate this condition in terms of the representation (2) in a useful manner. We
recall (cf [21]) that Stokes lines are defined in the same way as in Dingle [27]: hanging from
turning points, these are level lines of Re

(∫ q
p(q ′) dq ′) in the q-complex plane (when the

positive direction of summation is considered). In our case, the Stokes pattern has exactly five
asymptotic directions at infinity, distributed according to the phases arg(q) = 3π/10 + 2kπ/5,
k = 0, . . . , 4. Consequently, the property for a wave solution to decay at −∞ (respectively,
+∞) is equivalent to the property for its (right or left) WKB symbol to be recessive (cf [20, 21])
along the Stokes line asymptotic to arg(q) = 11π/10 (respectively, −π/10) at infinity.

4.1. First (critical) chart

First, we focus on what happens for positive real α, thus we set θ = 0 in equation (2).
Looking for the quantization condition, some investigations show that it is convenient to

localize Ê near the relevant critical value 2/3
√

3. For Ê = 2/3
√

3 the pattern of Stokes lines,
drawn in figure 7, has a double turning point (at q = −i/

√
3). This double turning is the

crossing point when Ê → 2/3
√

3 of a pair of simple turning points, symmetric with respect to
the real axis when Ê is real and greater than 2/3

√
3. To this pair of coalescing simple turning

† For an introduction to the resurgence theory, see for instance [28].
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Figure 7. Critical Stokes pattern (real positive direction of summation).

points corresponds a cycle γ , like the one drawn in figure 6, called a vanishing cycle: this
cycle, as well as the action integral ωγ , vanishes when Ê → 2/3

√
3.

The dependence of &γ on Ê is analytic (and even regular, in the sense of [21]) near the
critical value 2/3

√
3, allowing us to substitute Ê = 2/3

√
3 + h̄Er into &γ . Defining

s(Er, h̄) = −1

2
+

&γ

2πh̄
|(Ê = 2/3

√
3 + h̄Er)

we obtain the so-called (critical) monodromy exponent of the double turning point: it is a
resurgent formal (WKB) series expansion, uniquely defined up to the orientation of the cycle
γ . It is convenient for our purpose to choose this orientation so that s = (3−1/4Er−1)/2+O(h̄)
(an algorithm to obtain s is described in detail in [20]).

Using the same reasoning as in [20, section III.4], one easily obtains

1

�(−s)
= 0 (5)

for the secular equation. To see that equation (5) gives an exact quantization condition through
resummation is a bit subtle: since the double turning point is tied to the simple turning point
by a bounded Stokes line (figure 7), the monodromy exponent s is not Borel resummable,
therefore the meaning of equation (5) may depend on which resummation (right, left, etc) is
concerned. Nevertheless, as explained in [4], the solutions of equation (5) are the same for
all choices (the same phenomenon as this one described in [20, section V.1.2] occurs here) so
that:

• Solving equation (5) formally, which is also a Bohr–Sommerfeld-like equation s = n for
n ∈ N, one obtains a power-series expansion†,

En
r =

∞∑
k=0

En,kh̄
k (6)

† For this purpose, an algorithm can be found in [20].
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Figure 8. Domain of analyticity for the nth bound state in the
α-complex plane for arg(α) � 0.

which is resurgent with respect to 1/h̄ (as a consequence of the implicit resurgence theorem
[21]) and Borel-resummable, and whose Borel sum is precisely the exact solution of the
secular equation (5);

• it follows from the PT -invariance property and its very definition that s is real. Therefore,
the reality property is true for the series expansion (6), and consequently, for its Borel-sum
also.

Returning to the α variable, we obtain a slightly weaker version of claim 1:

Theorem 4.1 (See [4, 11, 14]). There exists a domain of the form α > G(E), E ∈ C, with G

a positive continuous function of E, in which the spectral set of Hα consists of a disjoint union
of real analytic curves En = En(α), n = 0, 1, . . . .

In particular, the right-hand side of figure 1, which has been drawn by summing the
Rayleigh–Schrödinger series to the least term, is valid for α large enough. More precise
evaluations could be obtained by appealing to the hyperasymptotics [29–31].

En(α) have, however, a wider domain of analyticity. Arguments developed in [20, 21]
and general nonsense in resurgence theory show that the Borel-transformed

B(h̄En
r )(ξ) =

∞∑
k=0

En,k

ξ k

�(k + 1)

of the series expansions h̄En
r (h̄) extend analytically in the cut plane C\]−∞,− 8

5 31/4]†, with
a rate of growth at infinity less than an exponential function of order 1 inside all subsectors of
this cut plane. Therefore, the Rayleigh–Schrödinger series (6) are resummable for an argument
of direction of summation δ running on ]−π,+π [. The Borel-sum

En(α) = α3/2

(
2

3
√

3
+
∫ ∞eiδ

0
e−α5/4ξB(h̄En

r )(ξ) dξ

)
is thus analytic in a sectorial neighbourhood of infinity Sn of aperture ]−6π/5, 6π/5[ =⋃

δ∈ ]−π,+π []−2(π + 2δ)/5, 2(π − 2δ)/5[ (see figure 8), the asymptotics at infinity being
governed by the Rayleigh–Schrödinger series we started with: this is exactly claim 6. This
property is also proved by independent means by Caliceti [14], while the Borel-summabilty
of the Rayleigh–Schrödinger series was first proved in [11].

Remark. Furthermore, to enlarge the domain of analyticity, one is led to analyse the Stokes
phenomena occurring for the directions of summation δ = ±π . When δ � −π for instance,

† ± 8
5 31/4i = ±2

∫ 2i/
√

3
−i/

√
3
p dq is the action period of the cycle running between the two turning points, with the sign

depending on the orientation of the cycle.



Spectral analysis of the complex cubic oscillator 8781

it may be shown that the bound states En(α) can be encoded by a series of ‘multi-instanton’
expansions [20, 34]. However, their Borel-sums only converge in sectorial neighbourhoods of
infinity of aperture ]−2(π + 2δ)/5, 6π/5[, so that nothing is gained. We return to this point
later (section 4.3).

This first chart gives also claim 2 directly, apart from the asymptotic estimate for the
general term of the Rayleigh–Schrödinger series for the nth energy level. This estimate (and
even a hyperasymptotic series expansion), already announced in [4], can be derived (we leave
it to the reader) from the resurgence structure of the monodromy exponent s, exactly in the
same way as the one described in [20, section V.1.2] for the quartic oscillator (the rule played
be the ‘seen’ singularity − 8

5 31/4, or ‘adjacent’ singularity in terms of hyperasymptotics, can
be guessed in the given asymptotic estimate).

Note that there exists another way to compute the asymptotics for the coefficients of the
Rayleigh–Schrödinger equation. For an even oscillator, it is known that part of the resurgence
structure can be recovered from a dispersion formula, yielding the method developed in [32].
Under a natural assumption, Bender and Dunne show in [33] how such a dispersion relation can
also be formulated for the PT -symmetric cubic oscillator, and derive the asymptotic estimate
of claim 2 (up to an easy rescaling).

We end this subsection with two remarks. From the fact that the analytic continuations of
the bound states En(α) behave like 2

3
√

3
α3/2 when |α| goes at infinity with arg(α) = ±π , one

can infer that:

• the En(α) are multivalued functions: singularities can be expected for the analytic
continuations;

• for each fixed n, En(α) cannot provide real eigenvalues for negative real α with |α| large
enough.

4.2. Second (generic) chart

We now look for bound states for negative real α, and thus consider equation (2) with θ = π

and Ê > 0. Applying the general methods developed in [20], one easily obtains

1 − 2eU sin(πs) = 0 (7)

for the quantization condition, where

U = i

2h̄

∫
γ ,+γ

P (q, Ê, h̄) dq = x
(
u(Ê) + O(x−2)

)
s = −1

2
+

1

2πh̄

∫
γ ,−γ

P (q, Ê, h̄) dq = −1

2
+

x

2π

(
ω(Ê) + O(x−2)

) (8)

with x = 1/h̄ = (−α)5/4.
The symmetric cycles γ and γ ,, and their difference γ , − γ , have been represented in

figure 9. Both U and s are resurgent Borel-resummable WKB expansions, and it follows from
the PT -symmetry property that:

Lemma 4.1. The WKB expansions U and s are real.

It may be checked that, for Ê large enough, u(Ê) is a positive real function. Solving
equation (7) formally thus means as a first step solving the equation s = n, where n is an
integer: this is the generic analogue of the Bohr–Sommerfeld-like equation (5). This is,
however, forgetting some small exponentials, which can be understood as ‘multi-instanton’
contributions [20, 34].
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Figure 9. The cycles γ , γ , and γ , − γ . The full circles are
the three turning points.

Figure 10. Secular equation (7): real solutions in the (U, s)-plane.

To gain a deeper understanding, one has to keep in mind that the quantization condition
(7) is indeed an exact quantization through the Borel-summation process, with a main
consequence: up to the (resurgent, Borel-resummable) isomorphism

(E, α) ↔ (U, s)

between domains to be made precise later, equation (7) can be understood as a model equation
in the sense of [19], i.e. an exact quantization condition in terms of the new variables (U, s),
whose real solutions have been drawn in figure 10, revealing a branch pointU = − ln(2)when
s is understood as a function of U .

As a matter of fact, equation (7) describes a connected complex analytic curve in the
C

2-space of the variables (U, s), and figure 10 is just its real trace. We would now like to
understand this analytic curve as a Riemann surface over the α-complex space (for |α| large
enough).

The key remark to going further is the following lemma, which derives from general
properties on elliptic functions (roughly, γ , + γ and γ , − γ are independent cycles, and
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Figure 11. Anti-Stokes pattern for Ê = Ê0.

the period lattice generated by
∫
γ ,+γ dq/p and

∫
γ ,−γ

dq/p is non-degenerate, see [35] for
instance).

Lemma 4.2. There exists a unique Ê = Ê0 ∈ [0,+∞[ such that u(Ê) = 0. Moreover, Ê0 is
a simple zero of u(Ê).

Remark. To such a value Ê0 of Ê corresponds a degenerate anti-Stokes pattern (i.e. when the
direction of summation of argument ±π/2 is considered) with a pair of symmetric bounded
anti-Stokes lines (see figure 11). Computations give Ê0 = 0.352 268 . . . .

Along with lemma 4.2, it will be convenient to introduce some notation:

u′
0 = du

dÊ
(Ê0) = 1

2 i
∫
γ ,+γ

dq

2p

∣∣∣∣Ê = Ê0 ω0 = ω(Ê0)

ω′
0 = dω

dÊ
(Ê0) =

∫
γ ,−γ

dq

2p

∣∣∣∣Ê = Ê0.

These constants u′
0, ω0, ω

′
0 are real (by PT -symmetry), and, in fact, positive: computations

give u′
0 ∼ 1.9548, ω0 ∼ 2.571 34 and ω′

0 ∼ 3.1956.
The idea is now to confine U in a bounded domain of the complex plane: both functions

U and s are regular in Ê near Ê0, and we set Ê − Ê0 = Er/x with Er in a compact set C and
we define

U(x, Er) = U(x, Ê) = u′
0Er + h(x,Er)

z(x, Er) = s(x, Ê) = 1

2π

(
xω0 − π + ω′

0Er

)
+ k(x,Er)

where h and k are small resurgent functions in x with a regular dependence onEr . The implicit
resurgent function theorem [21] allows us to think of (U, z) as new variables, the inverse map
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being given by

Er(z,U) = U
u′

0

+ H(z,U)

x(z,U) = 2πz

ω0
+
π

ω0
− ω′

0

ω0u
′
0

U + K(z,U)
(9)

whereH andK are small resurgent functions in zwith a regular dependence on U in a compact
set D.

This means localizing (E, α) in a neighbourhood of the analytic curveE = Ê0(−α)3/2 for
|α| large enough, and arg(−α) ∈ ]−2π/5, 2π/5[ when the positive real direction of summation
with respect to 1/h̄ = (−α)5/4 is concerned. In such a range of (E, α), translating figure 10
yields the left-hand part of figure 1.

We now return to our quantization condition (7), which also reads as

U = − ln(2 sin(πz))mod 2iπ (10)

and analyse the singular locus. Differentiating (10), we obtain

dz = − tan(πz)

π
dU (11)

while (9) yields

dx = πf1(z,U) dz − f2(z,U) dU (12)

with

f1(z,U) = 2

ω0
+ O(z−2)

f2(z,U) = ω′
0

ω0u
′
0

+ O(z−1).

It follows from (11) and (12) that the tangent curve is thus given by

dx = −(f1(z,U) tan(πz) + f2(z,U)) dU . (13)

As the resurgent function f1 is invertible, we introduce the quotient

f (z,U) = f2

f1
(z,U) = ω′

0

2u′
0

+ O(z−1)

and the function

�(z,U) = arctan(f (z,U)) = arctan

(
ω′

0

2u′
0

)
+ ϕ(z,U) (14)

with ϕ(z,U) a small resurgent function. Formula (13) becomes

dx = − f1

cos(πz) cos(�)
sin(πz + �) dU (15)

and yields (f1 being invertible)

τ = m m ∈ N m large enough (16)m

as a condition for the singular locus, where

τ = z + �/π = z +
1

π
arctan

(
ω′

0

2u′
0

)
+

1

π
ϕ(z,U).



Spectral analysis of the complex cubic oscillator 8785

From the implicit resurgent function theorem, this last equality can be inverted, giving z as a
resurgent function in τ with a regular dependence on U ∈ D:

z = τ − 1

π
arctan

(
ω′

0

2u′
0

)
+ ψ(τ,U)

with ψ a small resurgent function. It then follows from (16)m that the branch points are
solutions of the fixed-point problems

z = m− 1

π
arctan

(
ω′

0

2u′
0

)
+ ψ(m,U(z))

with U(z) given by (10). Remembering the condition U ∈ D, this yields

zkm = m− 1

π
arctan

(
ω′

0

2u′
0

)
+ O(m−1)

Uk
m = − ln

 2ω′
0√

ω′
0

2 + 4u′
0

2

− kπ i + O(m−1)

(17)km

where ln denotes the usual determination of the logarithmic function and

(m, k) ∈ 2N × (2Z + 1) or (m, k) ∈ (2N + 1)× 2Z (18)

with m large enough and |k| < Cste(D).
Translating these results in the x-plane by (9), we obtain the critical values

xkm = (2m + 1)
π

ω0
− 2

ω0
arctan

(
ω′

0

2u′
0

)
+

ω′
0

ω0u
′
0

ln

 2ω′
0√

ω′
0

2 + 4u′
0

2

 + kπ i

 + O(m−1)

(19)km
with (m, k) given by (18). It is straightforward to check on (15) that these singular points are
square root branch points.

Riemann surface structure. We now describe the Riemann surface. On the z complex plane,
we first consider an even, large, positive integer m. In order to think of ln(sin(πz)) as a
univalued function, we begin to draw two cuts ]−∞,m] and [m + 1,+∞[. In what follows,
we choose the determination of the ln function so that ln(sin(πz)) is real for z ∈ ]m,m + 1[.

We now define the function X(z) by substituting U = − ln(2 sin(πz)) − kπ i, k ∈ 2Z

(formula (10)) into the function x(z,U) of formula (9), and consider the ‘steepest-descent’ arcs
of Re(X), hanging from the critical points zkm+1, zk+1

m and zk−1
m , whose image byX are horizontal

half-lines (counted twice) in the x-plane, hanging from xkm+1, xk+1
m and xk−1

m respectively, and
going along the positive real direction. These smooth arcs define the boundaries of a deformed
vertical cut strip which will be called the (m, k) z-strip (see figure 12). This strip maps
conformally onto the horizontal (m, k) x-strip of the x-complex plane, as shown in figure 13.

However, we have to take into account that everything has been done for U in a compact
set D. This implies considering z (respectively, x) only in a compact set deprived of an open
neighbourhood of the logarithmic singularity z = m (respectively, in a compact set); see
figures 12 and 13.

Starting from the (m, k) z-strip and turning around the logarithmic singularity m (along
the path δ of figure 12, for instance) amounts to adding or subtracting an even integer to k.
Through the conformal mapping, this means that each (m, k) x-strip can be glued with its
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Figure 12. The (m, k) z-strip for even m. Figure 13. The (m, k) x-strip for even m and
k = −2, 0, 2. The path λ (respectively, δ) drawn
in figure 11 with k = 0 is mapped onto the path
λ (respectively, δ) in this figure. Forgetting the
horizontal dotted lines, one obtains the mth sheet.

neighbouring (m, k± 2) x-strip, to give what will be called the mth sheet (see figure 13). One
defines the sheets for odd m in a similar way.

Starting from the mth sheet, m even, and crossing the cut issued from the branch point
xkm+1 (respectively, xk±1

m ), one merges into the (m + 1)th sheet (respectively, (m− 1)th sheet).
The proof is just an easy translation from the z-plane to the x-plane. For the same reason, if m
is odd, the cut issued from the branch point xkm (respectively, xk±1

m+1) is the borderline between
the mth and the (m− 1)th sheet (respectively, (m + 1)th sheet).

Translating these results in terms of the α variable, we thus obtain:

Theorem 4.2. For every mo ∈ N large enough, there exists a bounded neighbourhood C(mo)

of −((2mo + 1) π
ω0

)4/5
in the α-complex plane such that the quantization condition, restricted

to a neighbourhood of the analytic curve E = Ê0(−α)3/2, describes a connected Riemann
surface over C(mo) with only square root branch points at αkm = −(xkm

4/5
),

xkm = (2m + 1)
π

ω0
− 2

ω0
arctan

(
ω′

0

2u′
0

)
+

ω′
0

ω0u
′
0

ln

 2ω′
0√

ω′
0

2 + 4u′
0

2

 + kπ i

 + O(m−1)

with (m, k) ∈ 2N × (2Z + 1) or (m, k) ∈ (2N + 1)× 2Z.

Theorem 4.2 gives partly the westbound description of section 2: each mth sheet of the
x-plane is conformally mapped onto an mth sheet in the α-plane as exemplified in figures 2
and 3, where a real eigenvalue EW

m can be defined. The relationship between the EW
m s through

analytic continuations are in perfect agreement with our claim 4 and its comments, apart from
the fact that our results are essentially local and, consequently at this stage, we have no reason
to interpret the mth west bound state EW

m (α) as analytic continuations of the mth bound states
Em(α) obtained from the first chart. To complete the drawing one thus needs to resort to other
charts.
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Figure 14. Critical Stokes pattern for ε = −1 (real positive direction of summation).

4.3. Third (critical) chart

We return to equation (2) and now set θ = ε4π/5, ε = ±, which means centring the phase of
α on ε4π/5. Remembering from claim 6 (or chart 1) that the analytic continuations of each
En(α) are asymptotic to 2

3
√

3
α3/2 at infinity, we start by considering the critical Stokes pattern

for Ê = 2
3
√

3
exp(ε6iπ/5) + O(h̄), as drawn in figure 14. It is interesting to note that, up to

a small rotation, figure 14 is exactly the Stokes pattern of a cubic barrier when one localizes
near the bottom of the well. Indeed, performing the change of variables

Q = eεiπ/10q Ẽ = e−εiπ/5Ê (20)

in the Schrödinger equation (2), one obtains

−h̄2 d2

dQ2
� + ε(Q3 −Q)� = Ẽ� (21)

with Ẽ = − 2
3
√

3
+ O(h̄). At first sight, such a result may appear confusing: to equation (21)

corresponds the Hamiltonian p2 + ε(Q3 − Q), which is not a self-adjoint operator (when
defined on its maximal domain); it admits infinitely many self-adjoint extensions, each one
with a pure point spectrum, thus leading to the non-uniqueness of the quantum dynamics (see
[11, 36])!

Fortunately, as our change of space variable (20) now induces a rotation in the complex
domain, one has to take care of the fact that considering solutions of (1) in the Hilbert space
L2(R) does not mean considering solutions � ∈ L2(R) for equation (21).

• The ε = −1 case. The L2 solutions of equation (2) can be characterized by their
exponential decay at infinity along the two Stokes lines L−∞ and L+∞ drawn in figure 14.
Translating this requirement of equation (21) means looking for exponentially decaying
functions at infinity along the two Stokes lines L−∞ and L+∞ drawn in figure 15. This
amounts to finding the (complex) values of the energies Ẽ such that an incident wave
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Figure 15. As for figure 14, but with equation (21).

coming from the right has a vanishing reflected component: this is exactly looking for the
resonance values (compare with [11, 14]).

• The ε = +1 case. Since this case can be derived from the previous ε = −1 case by
complex conjugation in α, here we are thus looking for the complex conjugate of the
resonance values.

The resonance values of a cubic barrier near the bottom of the well have already been
studied in [20] from the viewpoint of an exact semiclassical analysis. Translating (part of)
these results here, one deduces from the existence of a bounded Stokes line in figure 14 that the
eigenvaluesEn(α) cease to be the Borel sums of their Rayleigh–Schrödinger series expansions
for the range of α considered here (α ∈ ]−6π/5,−2π/5[ or ]2π/5, 6π/5[, depending on ε),
as announced in the remark of section 4.1.

The properties of the resonance values for a cubic barrier near the top of the well are less
known but, from what we know for a double well for instance (cf [37, 38]), one can guess an
interesting microlocal concentration (in the semiclassical limit) for the resonances values near
the top of the cubic barrier. Moreover, it has been shown in [19] that this phenomenon for a
double well was nothing but the real trace of an exponentially close singular structure in the
complex domain.

Thus, being interested here in the singular behaviour of the spectrum, we shall localize
our study near the top of the cubic barrier, which means considering large quantum numbers
for large |α|. We thus set

Ẽ = 2

3
√

3
+ h̄Er

(
so that E ∼ − 2

3
√

3
α3/2

)
. (22)

Choosing ε = −1 (say) in (21), arguments based on [20] again show that the (exact)
quantization condition simply reads

1 + a = 0 (23)
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where a is a ‘critical Voros multiplier’ associated with the (connection) oscillator cycle. It is
a Borel-resummable WKB expansion whose computation can be done to all orders (cf [21]),
yielding

a =
√

2πeU/4

�
(

1
2 + iU/2π

) ( c
h̄

)iU/2π
eiω/h̄e−iD.

The constant ω = 8
5 (3

1/4) is the action integral over the oscillator cycle, while c = 96(31/4) =
60ω is the so-called critical action multiplier [20, 21]. The real WKB series expansion

U(Er, h̄) = 31/42π
(

1
5

√
3Er +

(
7

576

√
3 − 5

192E
2
r

)
h̄ +

(− 455
18 432Er + 385

55 926

√
3E3

r

)
h̄2
)

+ O(h̄3)

is related to the (critical) monodromy exponent s of the double turning point through the
equality s + 1

2 = iU/2π , and D is a small real WKB series expansion:

D(Er, h̄) = 31/4
((

72
1152

√
3 − 47

384E
2
r

)
h̄ +

(− 15 911
110 592Er + 11 947

331 776

√
3E3

r

)
h̄2
)

+ O(h̄3).

From now on, our analysis will follow the spirit of [19], allowing us to be rather sketchy.
Instead of working with the variables (Er, h̄), we study our quantization condition in terms

of variables (U,X), where X is the ‘model variable’ defined implicitly by

a =
√

2πeU/4

�
(

1
2 + iU/2π

)XiU/2πeiX

and whose existence is guaranteed by the resurgent implicit theorem [21]:

X(U, h̄) = λ +
U

2π
ln 60 −

(
24

205
+
U 2

π2

(
47

80
+

ln 60

4

))
λ−1 + O(λ−2) (24)

with

λ = ω

h̄
.

One can thus write the quantization condition (23) in the form

exp(iθ) = −�
(

1
2 + iU/2π

)
√

2πeU/4
(25)

where

θ = X +
U

2π
ln(X).

The secular equation (25) gives immediately the nth bound state in terms of an analytic relation
between X and U :

X +
U

2π
ln(X) = (2n + 1)π + i 1

4U − 1
2 i ln

�2
(

1
2 + iU/2π

)
2π

. (26)n

Noting that �( 1
2 + iU/2π) is a meromorphic function with a lattice of simple poles located at

uk = 2iπ
(
k − 1

2

)
k ∈ N\{0}

running clockwise around one of these poles results in adding 1 to the quantum number n in
equation (26)n. Thus, the analytic relations (26)n actually describe different branches of a
single complex curve in the space C

2 of the variables (X,U), which will be seen as a Riemann
surface S over the X-complex plane.
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We now want to analyse, for |X| large enough and | arg(X)| < π/2, this Riemann surface
S. Differentiating equation (26)n yields(

1 +
U

2πX

)
dX =

(
− lnX

2π
+

i

4
+

1

2π
!

(
1

2
+

iU

2π

))
dU (27)

where !(z) = d
dz ln�(z) is the digamma function. Adding the condition dX = 0 to this

equation (27), we obtain

!

(
1

2
+

iU

2π

)
= lnX − 1

2 iπ (28)

for the ramification condition.
For Re(lnX) � 1, equation (28) implies that 1

2 + iU/2π necessary stands in a
neighbourhood of a pole of the digamma function, i.e. U near uk = 2iπ(k − 1

2 ), k ∈ N\{0}.
Precisely, solving (28) yields a sequence (Uk(lnX))k∈N\{0} of holomorphic functions of lnX,

Uk(lnX) = uk +
2iπ

lnX
+ · · · ∈ C{lnX}. (29)k

Substituting (29)k in (26)6n, one finally obtains the fixed-point problem

X = Fn
±k(X) (30)n±k

with

Fn
±k(X) = (2n± k + 1) π − Uk(lnX)

2π
ln(X) + i

Uk(lnX)

4
− 1

2 i ln
�2 (1/2 + iUk(lnX)/2π)

2π

where n is an integer, and the determination of the logarithm is chosen to be real along the
positive real axis.

It follows from (28) that

d

dX
Fn

±k(X) = −Uk(ln(X))

2πX
.

For |X| � C with C chosen large enough, one can assume that Uk(ln(X)) (given by (29)k)
satisfies

|Uk − uk| � rk < π (31)

hence |Uk| < 2πk, and we obtain∣∣∣∣ d

dX
Fn

±k(X)

∣∣∣∣ < k

C
< 1

under the condition 0 < k < C, i.e. Fn
±k is a contractive map. To ensure that our fixed-point

problem (30)n±k has a unique solution, it remains to check that the domain is stable under Fn
±k .

Introducing Y = ln(X), our domain is now defined by

Re(Y ) > ln(C) and −π/2 < Im(Y ) < π/2

and the fixed-point problem becomes

Y = ln(Gn
±k(Y ))

with

Gn
±k(Y ) = (2n± k + 1) π − Uk(Y )

2π
Y + i

Uk(Y )

4
− 1

2 i ln
�2
(

1
2 + iUk(Y )/2π

)
2π

.
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With the range of Uk considered here, the ln term on the right-hand side of our last equality
can be written as

− 1
2 i ln

�2
(

1
2 + iUk(Y )/2π

)
2π

= −i ln(Y ) + Bk(Y )

where Bk is a bounded function. Furthermore, using (31), we obtain

Gn
±k(Y ) = (

2(n± 1
2k)− 1

2k + 5
4

)
π − i(k − 1

2 )Y − i ln(Y ) + Dk(Y )

with Dk a bounded function, say |Dk| � dk . It is now clear that a necessary condition for the
domain to be stable is to impose

−π/2 < Im(Y ) < 0

which corresponds to the condition

−π/2 < arg(X) � 0

for the variableX. Note here that this result is in agreement with our claim 5 and its consequence
in the X-variable: no singularities were expected in the domain 0 < arg(X) < π/2 and |X|
large enough.

One easily checks that the demand |Gn
±k(Y )| > C (hence Re(ln(Gn

±k(Y ))) > ln(C)) will
be satisfied if (

2n± k − k +
3

2

)
π > C +

π

2 ln(C)
+ dk. (32)

Under this condition, we can apply the fixed-point theorem to (30)n±k which provides a unique

branch point of U(X), denoted by X
n±k/2
k/2 , with the value Un±k/2

k/2 given by (29)k . The square
root nature of the branch point obviously follows from (28). In summary:

Theorem 4.3. For any positive integerK , there exists a constantCK such that the quantization
condition describes a connected Riemann surface S over the domain {|X| > CK, −π/2 <

arg(X) � 0}, with only square root branch points at (Xn±k/2
k/2 , U

n±k/2
k/2 ) with k = 1, 2, . . . , K

and n any positive integer larger than a constant depending on k. Moreover, for fixed k,

Re(Xn±k/2
k/2 ) = (

2(n± 1
2k)− 1

2k + 5
4

)
π + O

(
1

ln n

)
Im(X

n±k/2
k/2 ) = −(k − 1

2 ) ln n− ln(ln n) + O(1)

(corresponding to U = U
n±k/2
k/2 ∼ uk) asymptotically with n → +∞ (n ∈ N).

Addendum. Our theoretical result (33) shows that the fixed-point problem (30)n±k converges
when n− k is positive and large enough, and, consequently, the quantum number n is a (large
enough) positive integer as it might be. Numerical evidence shows that our iteration scheme
(30)n±k converges as soon as n− k � 0.

In order to understand the sheet structure of our Riemann surface, we return to the
quantization condition (26)n for a given quantum number n ∈ N large enough. Starting with
a U close to zero, let us climb up the imaginary U -axis along paths avoiding the singularities
uk (k = 1, 2, . . .) by small half-circular detours as shown in figure 16, (top). Their conformal
images (by (26)n) are drawn in figure 16, (bottom) (please ignore the vertical half-lines).
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Figure 16. The right (respectively, left) path in the U -plane (top) is conformally mapped onto the
left (respectively, right) path in the X-plane (bottom) through the analytic relations (26)n (here
n = 4).

When U approaches the singularity uk , Im(X) goes to −∞, while U turning around the
quadratic point Un±k/2

k/2 (with ± = − for the right-hand path and ± = + for the left-hand path),

close to uk when n is large, makes X turn around the corresponding branch point Xn±k/2
k/2 .

Each of the vertical half-lines Ln±k/2
k/2 drawn in figure 16 (bottom), hanging from X

n±k/2
k/2 ,

which will play the role of cuts, is the image (counted twice) of two smooth arcs, close to
the imaginary U -axis, running from U

n±k/2
k/2 to uk and uk+1, respectively. We call the resulting

cut plane the nth sheet, on which a univalued function Un(X) can be defined as the nth
determination of the multivalued function U(X).
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Noting that crossing (uk, uk+1) from left to right increases the quantum number n by k in
(26)n, one sees that Ln±k/2

k/2 is a common frontier between the nth sheet and the (n± k)th sheet

(which corresponds to adding and subtracting the superscript and subscript of Xn±k/2
k/2 ): our

knowledge of the Riemann surface S is now complete.
Nevertheless, translating our previous result in terms of the (α,E) variable requires a

slight modification as in [19], section 3.3. Since the model variable X actually depends on
U (cf (24)), this results in a small distortion in the projection. Precisely to obtain the branch
points of the projection on the complex α-plane, one should rewrite dX in terms of dλ and dU
in equation (27), thus obtaining

!

(
1

2
+

iU

2π

)
= lnX − iπ

2
− ln 60 +

U

π

(
47

20
+

ln 60

2

)
X−1 + O(X−2) (28′)

in place of (28) for the ramification condition.
This modification does not change our concluding theorem 4.3 and its comments. From

the numerical point of view, the effect is small indeed, even for small values of the quantum
number n. All computations have been done with this modified equation (28′) (and (30)m±k

modified accordingly).
Translating each nth sheet (respectively, each determination Un(X)) in the α-plane yields

what we can call the ‘north-west’ nth sheet (respectively, the nth ‘north-west’ spectral function
ENW
n (α)). From the numerical side, this requires:

• to compute λ = ω(e4iπ/5α)5/4 as a resurgent (resummable) series expansion in terms of
our model variable X. This can be done algorithmically from its definition (24):

λ = X − U

2π
ln 60 +

(
24

205
+
U 2

π2

(
47

80
+

ln 60

4

))
X−1 + O(X−2) (33)

• to compute its Borel-sum. We have done it rather crudely, just using the first few terms of
its asymptotics (33). For a more precise numerical resummation, one may appeal to the
hyperasymptotic theory as detailed in [29–31].

The symmetric ‘south-west’ nth sheet (respectively, the nth ‘south-west’ spectral function
ESW
n (α)), deduced from its ‘north-west’ version by complex conjugation, is exactly what is

drawn in figure 5 (with n = 3): each singular point Xn±k/2
k/2 being a common branch point

for Un(X) and Un±k(X), its corresponding point αn±k/2
k/2 is thus a common branch point for

ESW
n (α) and ESW

n±k(α): the branch point αn−k/2
k/2 (respectively, αn+k/2

k/2 ) is much conveniently
denoted by the bracket [n, n− k] (respectively, [n + k, n])) in figure 5.

Drawing all the branch points αn±k/2
k/2 with n ∈ N, k ∈ N\{0} and n − k � 0, yields

figure 4. It may be checked numerically that the sequence of real branch points is exactly
described by the sequence αn+(n+1)/2

(n+1)/2 , n ∈ N (or equivalently by the brackets [2n + 1, n] with
the convention of figure 5).

To conclude this section, we summarize the main ideas we used for deriving theorem 4.3.
We started with the fact that any bound state En(α) obtained from the first chart can
be analytically continued in a convenient sectorial neighbourhood of infinity centred on
arg(α) = ±4π/5, and behaves like 2

3
√

3
α3/2 when |α| goes to infinity in the sector. To obtain

information concerning the singularities for large |α|, it was thus necessary to consider large
enough quantum numbers n. Comparisons with resonance values of the real cubic oscillator
led us to choose this range of (n, α) such that n = O(|α|5/4) (cf theorem 4.3 and (33)), while
En(α) ∼ − 2

3
√

3
α3/2.
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5. Conclusion

Our set of charts is now (almost) complete, giving convenient information over the whole
α-plane, except of course for the neighbourhood of the origin which are beyond the scope of
our tools.

To obtain a complete portrait of the global ramification, all we have to do is to match
together this set of information. We saw from our first chart that the eigenvalues En(α) can be
analytically continued in a full sector Sn of aperture | arg(α)| < 6π/5 whereEn(α) ∼ 2

3
√

3
α3/2

when |α| → ∞. The third chart completes this first approach. From theorem 4.3 and the
remark ending section 4.3, we deduce that the En(α)s extend as a sole multivalued analytic
function, with a quasi-lattice of singularities in a subsector of arg(α) ∈ ]4π/5, 6π/5[ mod(2π).
Our theorem 4.3 translates into a concrete qualitative and quantitative insight for the branch
point structure (south-west or north-west sheets), which is consistent with our comments
following claim 6, up to the following restriction: considering for instance the south-west
description, one should keep in mind that, for a given quantum number n, theorem 4.3 provides
valuable asymptotic information concerning a priori only a finite set of singularities αn±k/2

k/2 ,

near which En(α) ∼ − 2
3
√

3
α3/2, corresponding to a finite number of integers k. The fact that

the set of branch points αn+k/2
k/2 cannot accumulate but indeed goes to infinity in the direction

of argument 6π/5 (where En(α) ∼ 2
3
√

3
α3/2) for any n-south-west sheet, which means letting

k go to infinity, thus has no theoretical support but only a numerical one.
Starting from the collection of south-west and north-west n-sheets (n ∈ N), one can

deduce the equivalent but simpler west representation, as exemplified in figures 2 and 3, which
is a more suitable representation to understand the analytic continuations along the real axis
for instance. To compare with what we know from the second chart (theorem 4.2), we consider
the nth south-westbound description (figure 5) and straighten out the cuts to put them almost
horizontal, asymptotic at infinity to the negative real axis (the distance between the cuts and the
real axis behaving like O(1/|α|) when |α| → ∞, for instance). Along the deformation, some
of the branch points appear (respectively, disappear) from (respectively, into) other sheets. A
little thought (using our knowledge on how the different south-west and north-west sheets are
connected) yields the following conclusion; the nth west sheet has a set of 2n + 1 cuts: n of
them, hanging from α

n−k/2
k/2 , k = 1, . . . , [(n + 1)/2] (where [a] denotes the integer part of a)

and their complex conjugates, are common boundary cuts with the (n− 1)th west sheet, while
n+ 1 of these cuts, hanging from α

n+1−k/2
k/2 , k = 1, . . . , 1 + [n/2] and their complex conjugates,

are common boundary cuts with the (n+ 1)th west sheet. This qualitative result is in complete
agreement with what we obtained from the second chart with, again, a warning: the above
reasoning is partly based on the addendum following theorem 4.3; we thus did not take care
concerning the theoretical prescriptions on the quantum numbers n and the labels k. As a
matter of fact, the ‘median’ second chart gives rigorous information in a neighbourhood of the
singularityαn−k/2

k/2 with k = [(n+1)/2] near the negative real axis (whereEn(α) ∼ Ê0(−α)3/2),
hence for a label k half as large as the quantum number n. Consequently, even if numerical
computations give us good reason to think that our charts two and three overlap, this has not
been proved.

From a rigorous point of view, and apart from the above technicalities, the very nature of
our (exact semiclassical) asymptotic tools prevents us from giving the global ramification in its
full extent, our collection of (west, south-west or north-west) n-sheets being only valid for α
large enough (and E large enough accordingly). For instance the broken curves plotted in the
central part of figure 1 are nothing but bid interpolating curves between what we know from
the right-hand part (first chart) and left-hand part (second and third chart) of the picture! It thus
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remains an ‘unknown zone’ (as called in [19]), corresponding to an open set |E| = o(|α|3/2)

in C
2, where other methods should be apply. One of them could be the new quantization

approach developed by Voros [39, 40].
Nevertheless, the good convergence of our numerical schemes, even for small |α|, as well

as the consistence of our Riemann surface structure, suggests that this unknown zone does
not hold any surprising phenomena. Taking this for granted, our present work thus reveals,
in a somehow circuitous way, some properties of a still unknown special function attached to
a triple turning point, and thus new universal properties in asymptotic theory in the spirit of
[19, 41].

Acknowledgments

This work has been done within the framework of the CNRS-supported ‘ForMathVietNam’
project, as part of the thesis of the second author, under the joint direction of the first author and
of Professor F Pham. The authors are greatly indebted to Professor F Pham who introduced
them to the subject and for helpful discussions, and to Professor Nguyen Huu Duc for
his constant support at the University of Dalat. The second author thanks the Laboratoire
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